Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Macropinocytosis drives T cell growth by sustaining the activation of mTORC1.

Identifieur interne : 000091 ( Main/Exploration ); précédent : 000090; suivant : 000092

Macropinocytosis drives T cell growth by sustaining the activation of mTORC1.

Auteurs : John C. Charpentier [États-Unis] ; Di Chen [États-Unis] ; Philip E. Lapinski [États-Unis] ; Jackson Turner [États-Unis] ; Irina Grigorova [États-Unis] ; Joel A. Swanson [États-Unis] ; Philip D. King [États-Unis]

Source :

RBID : pubmed:31924779

Descripteurs français

English descriptors

Abstract

Macropinocytosis is an evolutionarily-conserved, large-scale, fluid-phase form of endocytosis that has been ascribed different functions including antigen presentation in macrophages and dendritic cells, regulation of receptor density in neurons, and regulation of tumor growth under nutrient-limiting conditions. However, whether macropinocytosis regulates the expansion of non-transformed mammalian cells is unknown. Here we show that primary mouse and human T cells engage in macropinocytosis that increases in magnitude upon T cell activation to support T cell growth even under amino acid (AA) replete conditions. Mechanistically, macropinocytosis in T cells provides access of extracellular AA to an endolysosomal compartment to sustain activation of the mechanistic target of rapamycin complex 1 (mTORC1) that promotes T cell growth. Our results thus implicate a function of macropinocytosis in mammalian cell growth beyond Ras-transformed tumor cells via sustained mTORC1 activation.

DOI: 10.1038/s41467-019-13997-3
PubMed: 31924779
PubMed Central: PMC6954116


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Macropinocytosis drives T cell growth by sustaining the activation of mTORC1.</title>
<author>
<name sortKey="Charpentier, John C" sort="Charpentier, John C" uniqKey="Charpentier J" first="John C" last="Charpentier">John C. Charpentier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109</wicri:regionArea>
<wicri:noRegion>48109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Di" sort="Chen, Di" uniqKey="Chen D" first="Di" last="Chen">Di Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109</wicri:regionArea>
<wicri:noRegion>48109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lapinski, Philip E" sort="Lapinski, Philip E" uniqKey="Lapinski P" first="Philip E" last="Lapinski">Philip E. Lapinski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109</wicri:regionArea>
<wicri:noRegion>48109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Turner, Jackson" sort="Turner, Jackson" uniqKey="Turner J" first="Jackson" last="Turner">Jackson Turner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109</wicri:regionArea>
<wicri:noRegion>48109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grigorova, Irina" sort="Grigorova, Irina" uniqKey="Grigorova I" first="Irina" last="Grigorova">Irina Grigorova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109</wicri:regionArea>
<wicri:noRegion>48109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Swanson, Joel A" sort="Swanson, Joel A" uniqKey="Swanson J" first="Joel A" last="Swanson">Joel A. Swanson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109</wicri:regionArea>
<wicri:noRegion>48109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="King, Philip D" sort="King, Philip D" uniqKey="King P" first="Philip D" last="King">Philip D. King</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA. kingp@umich.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109</wicri:regionArea>
<wicri:noRegion>48109</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31924779</idno>
<idno type="pmid">31924779</idno>
<idno type="doi">10.1038/s41467-019-13997-3</idno>
<idno type="pmc">PMC6954116</idno>
<idno type="wicri:Area/Main/Corpus">000135</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000135</idno>
<idno type="wicri:Area/Main/Curation">000135</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000135</idno>
<idno type="wicri:Area/Main/Exploration">000135</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Macropinocytosis drives T cell growth by sustaining the activation of mTORC1.</title>
<author>
<name sortKey="Charpentier, John C" sort="Charpentier, John C" uniqKey="Charpentier J" first="John C" last="Charpentier">John C. Charpentier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109</wicri:regionArea>
<wicri:noRegion>48109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Di" sort="Chen, Di" uniqKey="Chen D" first="Di" last="Chen">Di Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109</wicri:regionArea>
<wicri:noRegion>48109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lapinski, Philip E" sort="Lapinski, Philip E" uniqKey="Lapinski P" first="Philip E" last="Lapinski">Philip E. Lapinski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109</wicri:regionArea>
<wicri:noRegion>48109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Turner, Jackson" sort="Turner, Jackson" uniqKey="Turner J" first="Jackson" last="Turner">Jackson Turner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109</wicri:regionArea>
<wicri:noRegion>48109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grigorova, Irina" sort="Grigorova, Irina" uniqKey="Grigorova I" first="Irina" last="Grigorova">Irina Grigorova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109</wicri:regionArea>
<wicri:noRegion>48109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Swanson, Joel A" sort="Swanson, Joel A" uniqKey="Swanson J" first="Joel A" last="Swanson">Joel A. Swanson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109</wicri:regionArea>
<wicri:noRegion>48109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="King, Philip D" sort="King, Philip D" uniqKey="King P" first="Philip D" last="King">Philip D. King</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA. kingp@umich.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109</wicri:regionArea>
<wicri:noRegion>48109</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (MeSH)</term>
<term>Animals (MeSH)</term>
<term>CD4-Positive T-Lymphocytes (physiology)</term>
<term>Endosomes (metabolism)</term>
<term>Guanine Nucleotide Exchange Factors (genetics)</term>
<term>Guanine Nucleotide Exchange Factors (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Lysosomes (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred C57BL (MeSH)</term>
<term>Pinocytosis (physiology)</term>
<term>Signal Transduction (physiology)</term>
<term>T-Lymphocytes (cytology)</term>
<term>T-Lymphocytes (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Endosomes (métabolisme)</term>
<term>Facteurs d'échange de nucléotides guanyliques (génétique)</term>
<term>Facteurs d'échange de nucléotides guanyliques (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Lymphocytes T (cytologie)</term>
<term>Lymphocytes T (physiologie)</term>
<term>Lymphocytes T CD4+ (physiologie)</term>
<term>Lysosomes (métabolisme)</term>
<term>Pinocytose (physiologie)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée C57BL (MeSH)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Guanine Nucleotide Exchange Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Guanine Nucleotide Exchange Factors</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Amino Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Lymphocytes T</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>T-Lymphocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs d'échange de nucléotides guanyliques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endosomes</term>
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Endosomes</term>
<term>Facteurs d'échange de nucléotides guanyliques</term>
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Lymphocytes T</term>
<term>Lymphocytes T CD4+</term>
<term>Pinocytose</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>CD4-Positive T-Lymphocytes</term>
<term>Pinocytosis</term>
<term>Signal Transduction</term>
<term>T-Lymphocytes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acides aminés</term>
<term>Animaux</term>
<term>Humains</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Macropinocytosis is an evolutionarily-conserved, large-scale, fluid-phase form of endocytosis that has been ascribed different functions including antigen presentation in macrophages and dendritic cells, regulation of receptor density in neurons, and regulation of tumor growth under nutrient-limiting conditions. However, whether macropinocytosis regulates the expansion of non-transformed mammalian cells is unknown. Here we show that primary mouse and human T cells engage in macropinocytosis that increases in magnitude upon T cell activation to support T cell growth even under amino acid (AA) replete conditions. Mechanistically, macropinocytosis in T cells provides access of extracellular AA to an endolysosomal compartment to sustain activation of the mechanistic target of rapamycin complex 1 (mTORC1) that promotes T cell growth. Our results thus implicate a function of macropinocytosis in mammalian cell growth beyond Ras-transformed tumor cells via sustained mTORC1 activation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31924779</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2041-1723</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>01</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Nature communications</Title>
<ISOAbbreviation>Nat Commun</ISOAbbreviation>
</Journal>
<ArticleTitle>Macropinocytosis drives T cell growth by sustaining the activation of mTORC1.</ArticleTitle>
<Pagination>
<MedlinePgn>180</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41467-019-13997-3</ELocationID>
<Abstract>
<AbstractText>Macropinocytosis is an evolutionarily-conserved, large-scale, fluid-phase form of endocytosis that has been ascribed different functions including antigen presentation in macrophages and dendritic cells, regulation of receptor density in neurons, and regulation of tumor growth under nutrient-limiting conditions. However, whether macropinocytosis regulates the expansion of non-transformed mammalian cells is unknown. Here we show that primary mouse and human T cells engage in macropinocytosis that increases in magnitude upon T cell activation to support T cell growth even under amino acid (AA) replete conditions. Mechanistically, macropinocytosis in T cells provides access of extracellular AA to an endolysosomal compartment to sustain activation of the mechanistic target of rapamycin complex 1 (mTORC1) that promotes T cell growth. Our results thus implicate a function of macropinocytosis in mammalian cell growth beyond Ras-transformed tumor cells via sustained mTORC1 activation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Charpentier</LastName>
<ForeName>John C</ForeName>
<Initials>JC</Initials>
<Identifier Source="ORCID">0000-0001-9488-8239</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Di</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lapinski</LastName>
<ForeName>Philip E</ForeName>
<Initials>PE</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Turner</LastName>
<ForeName>Jackson</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grigorova</LastName>
<ForeName>Irina</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Swanson</LastName>
<ForeName>Joel A</ForeName>
<Initials>JA</Initials>
<Identifier Source="ORCID">0000-0003-0900-8212</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>King</LastName>
<ForeName>Philip D</ForeName>
<Initials>PD</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA. kingp@umich.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM110215</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R35 GM131720</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Commun</MedlineTA>
<NlmUniqueID>101528555</NlmUniqueID>
<ISSNLinking>2041-1723</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020662">Guanine Nucleotide Exchange Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C112278">Rasgrp1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015496" MajorTopicYN="N">CD4-Positive T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011992" MajorTopicYN="N">Endosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020662" MajorTopicYN="N">Guanine Nucleotide Exchange Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008247" MajorTopicYN="N">Lysosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010873" MajorTopicYN="N">Pinocytosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013601" MajorTopicYN="N">T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>09</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31924779</ArticleId>
<ArticleId IdType="doi">10.1038/s41467-019-13997-3</ArticleId>
<ArticleId IdType="pii">10.1038/s41467-019-13997-3</ArticleId>
<ArticleId IdType="pmc">PMC6954116</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell Metab. 2016 Apr 12;23(4):580-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27076075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2008 Apr;15(4):322-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18420139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2014 Feb;26:63-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24556402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2010 Oct 14;53(19):7146-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20860370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2009 Nov;111(4):901-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19765184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1996 Dec;135(5):1249-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8947549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 May 30;497(7451):633-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23665962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 May;129(4):989-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7538141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1986 Sep 5;233(4768):1061-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3090687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):274-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2012 Nov 1;189(9):4488-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23002437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2000 Feb;113 ( Pt 4):709-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10652263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Dec 7;282(49):35666-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Cell Biol. 1998 Feb;76(1):34-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9553774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2013 May;14(5):500-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23525088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Oncol. 2010 Feb 20;28(6):1075-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20085938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2017 Sep 21;67(6):936-946.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28918901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2009 Apr;10(4):364-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19192253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Apr;27(7):2732-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17283063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2015 Oct 12;211(1):159-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26438830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Jul 16;162(2):259-270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26144316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2011 Dec 22;13(1):39-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22189424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Aug 5;146(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2015 Jan 30;6:1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25688210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2014 May 15;40(5):692-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24792914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Biol Lett. 2014 Dec;19(4):638-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25424911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2016 Jul 15;129(14):2697-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27352861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2014 May 01;6(5):a016725</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24789820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1998 Feb;75(2):192-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9548376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2014 Jun 02;6(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24890511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2010 Feb 22;188(4):547-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20156964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2017 Nov;284(22):3778-3790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28544479</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Charpentier, John C" sort="Charpentier, John C" uniqKey="Charpentier J" first="John C" last="Charpentier">John C. Charpentier</name>
</noRegion>
<name sortKey="Chen, Di" sort="Chen, Di" uniqKey="Chen D" first="Di" last="Chen">Di Chen</name>
<name sortKey="Grigorova, Irina" sort="Grigorova, Irina" uniqKey="Grigorova I" first="Irina" last="Grigorova">Irina Grigorova</name>
<name sortKey="King, Philip D" sort="King, Philip D" uniqKey="King P" first="Philip D" last="King">Philip D. King</name>
<name sortKey="Lapinski, Philip E" sort="Lapinski, Philip E" uniqKey="Lapinski P" first="Philip E" last="Lapinski">Philip E. Lapinski</name>
<name sortKey="Swanson, Joel A" sort="Swanson, Joel A" uniqKey="Swanson J" first="Joel A" last="Swanson">Joel A. Swanson</name>
<name sortKey="Turner, Jackson" sort="Turner, Jackson" uniqKey="Turner J" first="Jackson" last="Turner">Jackson Turner</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000091 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000091 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31924779
   |texte=   Macropinocytosis drives T cell growth by sustaining the activation of mTORC1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31924779" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020